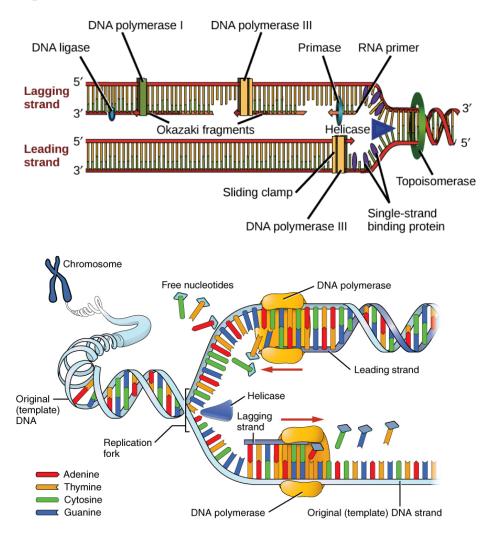

~UNIT 4 GENETIC EXPRESSION TEST STUDY GUIDE~

Structure

- **DNA (deoxyribose nucleic acid)** DNA never, ever, ever leaves the nucleus! (exception mitosis and meiosis)
 - Is shaped like a twisted ladder or spiral staircase called a double helix
 - Is protected behind the cellular membrane and the nuclear membrane
- DNA Made Up
 - Has a backbone made up of phosphate and sugar (deoxyribose)
 - \circ $\;$ The nitrogen bases are hydrogen bonds and the rest of DNA is covalent bonds $\;$
 - One nucleotide has three parts
 - 1 sugar
 - 1 phosphate
 - $\bullet \quad 1 \text{ base } (A,T,C \text{ or } G)$
- Base pairs
 - A&T two hydrogen bonds
 - G&C three hydrogen bonds
- Purines (2 rings):
 - Adenine
 - Guanine
- Pyrimidine (1 ring):
 - Thymine
 - Cytosine
 - Uracil (RNA)
- DNA and RNA (similarities and differences):
- Similarities
 - Both helical
 - Share nitrogen bases A,C,G
 - Both have phosphate
- Differences
 - RNA has uracil and DNA has thymine
 - DNA is double stranded and RNA is single stranded
 - Different sugars

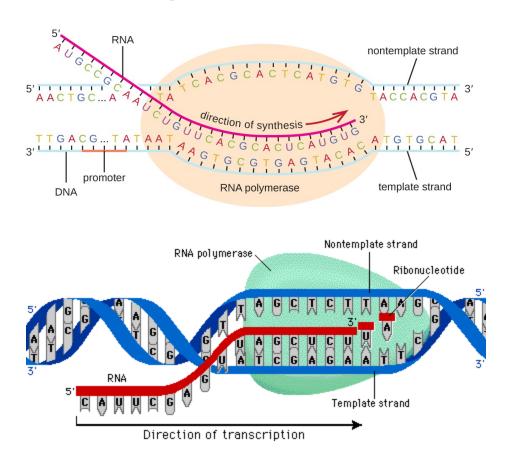
Structure Picture



Replication

- DNA replication makes a copy of itself
- How does the base pairing help it make a copy of itself?
 - When the two strands are pulled apart(by helicase)
 - An enzyme (DNA Polymerase) can read them
- **DNA replication is Semi** conservative meaning each strand is ¹/₂ of the original and ¹/₂ of the new DNA.
- Process of Replication
 - Helicase- breaks unzips the hydrogen bonds in DNA
 - **DNA polymerase-** adds DNA complementary bases to the original DNA to create two DNA strands. DNA polymerase found on each strand.
 - Leading strand: goes towards helicase
 - Lagging strand: goes away from helicase

Replication Pictures



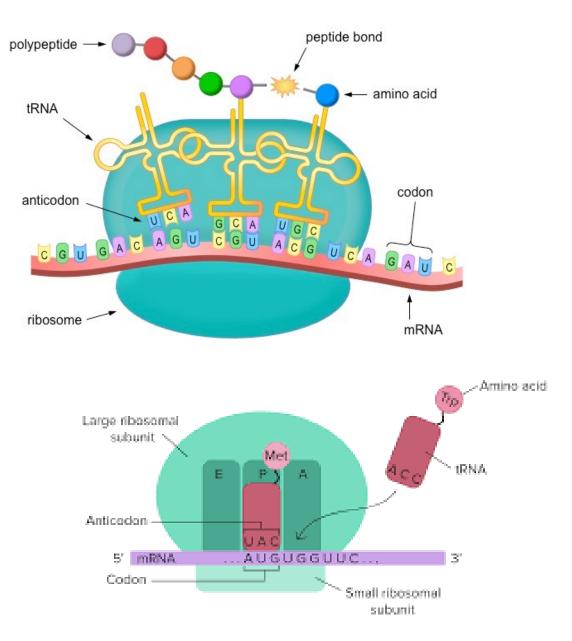
Transcription

- Transcription- The conversion of DNA into mRNA (a cousin of DNA)
- Transcription
 - DNA never leaves the nucleus, but RNA can
 - Messengers RNA(mRNA) become DNA's messenger to the rest of the cell
- RNA
 - Made up of nucleotides
 - sugar (ribose sugar- different than DNA)
 - Phosphate
 - Bases(A,U,G and C) U= Uracil replaces T
- Helix(not double- single stranded) like a slinky
- DNA acts as the boss RNA as the messenger

Process of Transcription

- Occurs in the nucleus of eukaryotic cells
- This process use DNA to make the mRNA
- These process is split into 3 stage:
 - 1. **Initiation Stage**: The promoter region acts as a recognition site for RNA polymerase to bind. The binding of the polymerase causes the DNA double helix to open.
 - 2. **Elongation Stage:** During this stage, The RNA polymerase goes along the DNA strand. The complementary bases will pair up and the RNA polymerase links nucleotides to 3 prime ends to the growing RNA molecule.
 - 3. **Termination Stage:** Once the RNA polymerase reaches the terminator region the mRNA sequence is complete. Then the RNA polymerase, DNA strand and mRNA transcript break apart from each other.

Pictures of Transcription:


Translation

- Translation- The conversion of mRNA into protein (made of amino acids)
- Translation
 - Occurs in the cytoplasm, in the ribosome
 - mRNA is "read"
 - 3 bases at a time(called a codon)
 - 1 specific amino acid is added for every codon read
 - Added by a transfer RNA(tRNA) containing an anticodon
 - 20 different amino acids (64 codons)
 - The string of amino acids is "folded" into a specific shape and "shipped" to its designated location.
 - You are made of millions of these proteins! From your skin to your eyes to your liver to your brain!
 - Start codon: AUG and always binds with Methionine- UAC
 - Stop codon: UGA, UAA, or UAG

Process of Translation

- Occurs in the cytoplasm of the cell
- The information from mRNA is used to make a polypeptide.
- The information from mRNA is translated into a protein.
- The nitrogen bases are grouped together in three called codons.
- Most codons code for specific amino acids.
- 1 start codon 3 codons to get to the stop:
- The mRNA binds to a small ribosomal subunit of the start codon which has to be AUG.
- Each amino acid is brought to the ribosome by a specific tRNA molecule.
- The amino acid sequence is determined by the anticodon sequence of the transfer RNA.
- Complementary base pairing happens between the codon of mRNA and the anticodon tRNA.
- After the initial tRNA molecule binds to the start codon, the large ribosomal subunit binds to form the translation complex and initiation is complete.
- Ribosomal subunit 3 stages:
 - 1. E- The uncharged tRNA molecule exits at the E site.
 - 2. P- A polypeptide bond is formed at the P site and slides to the right.
 - 3. A- Individual amino acids are brought by tRNA(anticodon) to bind to mRNA(codon) complementary bases. When a charged tRNA molecule binds to the A site a polypeptide bond is formed.
- This process repeats until they reach a stop codon.

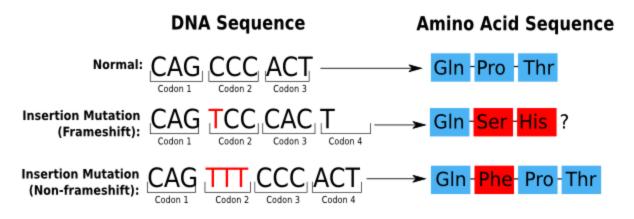
• A release site binds to site A when it is at a stop codon, and the polypeptide is released from tRNA from the P site.

Translation Pictures

Mutations

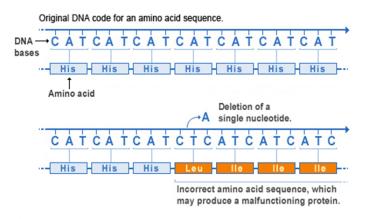
- Mutation- The change in a base sequence of DNA or RNA
- Types of Mutations

- **Point Mutation -** is a mutation that exchanges one base for another (i.e., a change in a single "chemical letter" such as switching an A to a G). Such a substitution could:
- **Insertion** are mutations in which extra base pairs are inserted into a new place in the DNA.
- **Deltation** are mutations in which a section of DNA is lost or deleted.
- **Translocations-** Moving big parts of a DNA sequence which can switch the entire mRNA and amino acid sequence.
- **Frameshift-** Since protein coding DNA is divided into codon three bases long, insertions and deletions can alter a gene so that the message is no longer correctly parsed. These changes are called frame shifts.

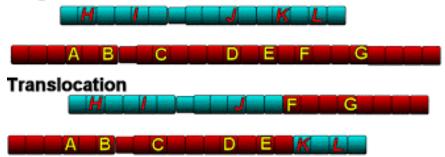

Why do Mutations go Commonly Unnoticed in the body

- Have no effect due to the multiple codons coding for the same amino acid
- Only occurs in one cell of the body
- Not detrimental to the livelihood of the cell or organism

Which Mutation has Worst Effects:


• Translocations because it moves big chunks of the nitrogen bases in the base sequence which can switch most or all of the mRNA sequence and amino acid sequence.

	No mutation	Point mutations			
		Silent	Nonsense	Missense	
				conservative	non-conservative
DNA level	TTC	TTT	ATC	TCC	T <mark>G</mark> C
mRNA level	AAG	AAA	UAG	A <mark>G</mark> G	A <mark>C</mark> G
protein level	Lys	Lys	STOP	Arg	Thr
	NH4°	NH5		H ₂ N VH ₂ *	н,с он
					basic polar


A Deletion Mutation in a Gene

Deletion mutation

U.S. National Library of Medicine

Original Chromosomes

